391 research outputs found

    Modified Newtonian Dynamics in the Milky Way

    Full text link
    Both microlensing surveys and radio-frequency observations of gas flow imply that the inner Milky Way is completely dominated by baryons, contrary to the predictions of standard cold dark matter (CDM) cosmology. We investigate the predictions of the Modified Newtonian Dynamics (MOND) formula for the Galaxy given the measured baryon distribution. Satisfactory fits to the observationally determined terminal-velocity curve are obtained for different choices of the MOND's interpolating function mu(x). However, with simple analytical forms of mu(x), the local circular speed v_c(R_0) can be as large as 220 km/s only for values of the parameter a_0 that are excluded by observations of NGC 3198. Only a numerically specified interpolating function can produce v_c(R_0)=220 km/s, which is therefore an upper limit in MOND, while the asymptotic velocity is predicted to be v_c(infty)=170+-5 km/s. The data are probably not consistent with the functional form of mu(x) that has been explored as a toy model in the framework of Bekenstein's covariant theory of gravity.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    Testing modified gravity with globular cluster velocity dispersions

    Full text link
    Globular clusters (GCs) in the Milky Way have characteristic velocity dispersions that are consistent with the predictions of Newtonian gravity, and may be at odds with Modified Newtonian Dynamics (MOND). We discuss a modified gravity (MOG) theory that successfully predicts galaxy rotation curves, galaxy cluster masses and velocity dispersions, lensing, and cosmological observations, yet produces predictions consistent with Newtonian theory for smaller systems, such as GCs. MOG produces velocity dispersion predictions for GCs that are independent of the distance from the galactic center, which may not be the case for MOND. New observations of distant GCs may produce strong criteria that can be used to distinguish between competing gravitational theories.Comment: 4 pages, 2 figures; accepted for publication in Ap

    The effects of bar-spiral coupling on stellar kinematics in the Galaxy

    Get PDF
    We investigate models of the Milky Way disc taking into account simultaneously the bar and a two-armed quasi-static spiral pattern. Away from major resonance overlaps, the mean stellar radial motions in the plane are essentially a linear superposition of the isolated effects of the bar and spirals. Thus, provided the bar is strong enough, even in the presence of spiral arms, these mean radial motions are predominantly affected by the Galactic bar for large scale velocity fluctuations. This is evident when comparing the peculiar line-of-sight velocity power spectrum of our coupled models with bar-only models. However, we show how forthcoming spectroscopic surveys could disentangle bar-only non-axisymmetric models of the Galaxy from models in which spiral arms have a significant amplitude. We also point out that overlaps of low-order resonances are sufficient to enhance stellar churning within the disc, even when the spirals amplitude is kept constant. Nevertheless, for churning to be truly non-local, stronger or (more likely) transient amplitudes would be needed: otherwise the disc is actually mostly unaffected by churning in the present models. Finally, regarding vertical breathing modes, the combined effect of the bar and spirals on vertical motions is a clear non-linear superposition of the isolated effects of both components, significantly superseding the linear superposition of modes produced by each perturber separately, thereby providing an additional effect to consider when analysing the observed breathing mode of the Galactic disc in the extended Solar neighbourhood.Comment: 13 pages, 12 figures. MNRAS. Accepted for publication. v2 is the published versio

    Cosmological simulations in MOND: the cluster scale halo mass function with light sterile neutrinos

    Get PDF
    We use our Modified Newtonian Dynamics (MOND) cosmological particle-mesh N-body code to investigate the feasibility of structure formation in a framework involving MOND and light sterile neutrinos in the mass range 11 - 300 eV: always assuming that \Omega_{\nu_s}=0.225 for H_o=72 \kms Mpc^{-1}. We run a suite of simulations with variants on the expansion history, cosmological variation of the MOND acceleration constant, different normalisations of the power spectrum of the initial perturbations and interpolating functions. Using various box sizes, but typically with ones of length 256 Mpc/h, we compare our simulated halo mass functions with observed cluster mass functions and show that (i) the sterile neutrino mass must be larger than 30 eV to account for the low mass (M_{200}<10^{14.6} solar masses) clusters of galaxies in MOND and (ii) regardless of sterile neutrino mass or any of the variations we mentioned above, it is not possible to form the correct number of high mass (M_{200}>10^{15.1} solar masses) clusters of galaxies: there is always a considerable over production. This means that the ansatz of considering the weak-field limit of MOND together with a component of light sterile neutrinos to form structure from z ~ 200 fails. If MOND is the correct description of weak-field gravitational dynamics, it could mean that subtle effects of the additional fields in covariant theories of MOND render the ansatz inaccurate, or that the gravity generated by light sterile neutrinos (or by similar hot dark matter particles) is different from that generated by the baryons.Comment: 10 pages, 9 figures, accepted for publication in MNRA

    Semantic validation of affinity constrained service function chain requests

    Get PDF
    Network Function Virtualization (NFV) has been proposed as a paradigm to increase the cost-efficiency, flexibility and innovation in network service provisioning. By leveraging IT virtualization techniques in combination with programmable networks, NFV is able to decouple network functionality from the physical devices on which they are deployed. This opens up new business opportunities for both Infrastructure Providers (InPs) as well as Service Providers (SPs), where the SP can request to deploy a chain of Virtual Network Functions (VNFs) on top of which its service can run. However, current NFV approaches lack the possibility for SPs to define location requirements and constraints on the mapping of virtual functions and paths onto physical hosts and links. Nevertheless, many scenarios can be envisioned in which the SP would like to attach placement constraints for efficiency, resilience, legislative, privacy and economic reasons. Therefore, we propose a set of affinity and anti-affinity constraints, which can be used by SPs to define such placement restrictions. This newfound ability to add constraints to Service Function Chain (SFC) requests also introduces an additional risk that SFCs with conflicting constraints are requested or automatically generated. Therefore, a framework is proposed that allows the InP to check the validity of a set of constraints and provide feedback to the SP. To achieve this, the SFC request and relevant information on the physical topology are modeled as an ontology of which the consistency can be checked using a semantic reasoner. Enabling semantic validation of SFC requests, eliminates inconsistent SFCs requests from being transferred to the embedding algorithm.Peer Reviewe

    N-body simulations of the Carina dSph in MOND

    Get PDF
    The classical dwarf spheroidals (dSphs) provide a critical test for Modified Newtonian Dynamics (MOND) because they are observable satellite galactic systems with low internal accelerations and low, but periodically varying, external acceleration. This varying external gravitational field is not commonly found acting on systems with low internal acceleration. Using Jeans modelling, Carina in particular has been demonstrated to require a V-band mass-to-light ratio greater than 5, which is the nominal upper limit for an ancient stellar population. We run MOND N-body simulations of a Carina-like dSph orbiting the Milky Way to test if dSphs in MOND are stable to tidal forces over the Hubble time and if those same tidal forces artificially inflate their velocity dispersions and therefore their apparent mass-to-light ratio. We run many simulations with various initial total masses for Carina, and Galactocentric orbits (consistent with proper motions), and compare the simulation line of sight velocity dispersions (losVDs) with the observed losVDs of Walker et al. (2007). We find that the dSphs are stable, but that the tidal forces are not conducive to artificially inflating the losVDs. Furthermore, the range of mass-to-light ratios that best reproduces the observed line of sight velocity dispersions of Carina is 5.3 to 5.7 and circular orbits are preferred to plunging orbits. Therefore, some tension still exists between the required mass-to-light ratio for the Carina dSph in MOND and those expected from stellar population synthesis models. It remains to be seen whether a careful treatment of the binary population or triaxiality might reduce this tension.Comment: 17 pages, 12 figures, accepted for publication in MNRA

    The cosmological behavior of Bekenstein's modified theory of gravity

    Get PDF
    We study the background cosmology governed by the Tensor-Vector-Scalar theory of gravity proposed by Bekenstein. We consider a broad family of potentials that lead to modified gravity and calculate the evolution of the field variables both numerically and analytically. We find a range of possible behaviors, from scaling to the late time domination of either the additional gravitational degrees of freedom or the background fluid.Comment: 10 pages, 8 figures, A few typos corrected in the text and figures. Version published in PR

    Milky Way Mass Models and MOND

    Full text link
    Using the Tuorla-Heidelberg model for the mass distribution of the Milky Way, I determine the rotation curve predicted by MOND. The result is in good agreement with the observed terminal velocities interior to the solar radius and with estimates of the Galaxy's rotation curve exterior thereto. There are no fit parameters: given the mass distribution, MOND provides a good match to the rotation curve. The Tuorla-Heidelberg model does allow for a variety of exponential scale lengths; MOND prefers short scale lengths in the range 2.0 to 2.5 kpc. The favored value of scale length depends somewhat on the choice of interpolation function. There is some preference for the `simple' interpolation function as found by Famaey & Binney. I introduce an interpolation function that shares the advantages of the simple function on galaxy scales while having a much smaller impact in the solar system. I also solve the inverse problem, inferring the surface mass density distribution of the Milky Way from the terminal velocities. The result is a Galaxy with `bumps and wiggles' in both its luminosity profile and rotation curve that are reminiscent of those frequently observed in external galaxies.Comment: Accepted for publication in the Astrophysical Journal. 31 pages including 8 figures and 3 table

    Spiral and bar driven peculiar velocities in Milky Way sized galaxy simulations

    Get PDF
    We investigate the kinematic signatures induced by spiral and bar structure in a set of simulations of Milky Way-sized spiral disc galaxies. The set includes test particle simulations that follow a quasi-stationary density wave-like scenario with rigidly rotating spiral arms, and NN-body simulations that host a bar and transient, co-rotating spiral arms. From a location similar to that of the Sun, we calculate the radial, tangential and line-of-sight peculiar velocity fields of a patch of the disc and quantify the fluctuations by computing the power spectrum from a two-dimensional Fourier transform. We find that the peculiar velocity power spectrum of the simulation with a bar and transient, co-rotating spiral arms fits very well to that of APOGEE red clump star data, while the quasi-stationary density wave spiral model without a bar does not. We determine that the power spectrum is sensitive to the number of spiral arms, spiral arm pitch angle and position with respect to the spiral arm. However, it is necessary to go beyond the line of sight velocity field in order to distinguish fully between the various spiral models with this method. We compute the power spectrum for different regions of the spiral discs, and discuss the application of this analysis technique to external galaxies.Comment: 14 pages, 11 figures. Improved and MNRAS Accepte
    • …
    corecore